ROLES AND RESPONSIBILITIES

 Simulated 1D supersonic nozzle using McCormack method for both conservative and non conservative forms of governing equations

 Conducted a grid dependence test on solution of fluid flow through nozzle

 Evaluated computation time for conservative and non conservative forms of equation for two different time steps

CODE AND RESULT SNIPPETS

the flow through that point.

A) Governing Equation (:

(I) Continuity Equation:

$$\frac{\partial U_1}{\partial t} = - \frac{\partial F_1}{\partial x}$$

(II) Momentum Equation:

$$\frac{\partial U_2}{\partial t'} = -\frac{\partial F_2}{\partial x'} + J_2$$

(III) Energy Equation:

$$\frac{\partial U_3}{\partial t} = - \frac{\partial F_3}{\partial x}$$

Solution sector:U

Flux sector:F

Source term: J₂

$$U_1 = \rho^* A^*$$

$$U_2 = \rho^* A^* v^*$$

$$U_3 = \rho' \left(\frac{\epsilon'}{\gamma - 1} + \frac{\gamma}{2} v^{\alpha} \right) A'$$

$$F_2 = \rho^* A^* v^* + \binom{1}{2} p^* A^*$$

$$F_3 = \rho' \left(\frac{e'}{\gamma - 1} + \frac{\gamma}{2} v^2\right) v'A' + p'A'v'$$

$$J_2 = \frac{1}{\gamma} \cdot p' \cdot \frac{dA'}{dx'}$$

(B) initial conditions of Profile at time, t=0: $w(i) \ge 0$ 888 $w(i) \le 0.6$

$$ho(i)=1$$

$$T(i)=1$$

$$x(i)\geq 0.6888x(i)\leq 1.6$$

$$w(i) \geq 0.58$$
sSc $w(i) \leq 1.5$

$$\rho(i) = 1 - 0.366 \cdot (v(i) - 0.5);$$

$$T(i) = 1 - 0.167(x(i) - 0.5);$$

$$w(i) \ge 1.58 \text{sScw}(i) \le 3.6$$

```
function [v,rho,t,m,p,mach,v_t,rho_t,t_t,m_t,p_t,mach_t,k,time_execution_1] = non_conservative(n,x,d
x,c,gamma,a,nt,throat)
% Inputs
        % Length of the domain
        % no of the grid points
       % x array along the length of the domain
              x =linspace(0,L,n)
       % Grid size
              dx = x(2) - x(1)
       % other parameters
% calculate Initial profile, which are non dimensional
     rho = 1-0.3146*x;
     t = 1- 0.2314*x; % t =temperature
     v = (0.1 + 1.09*x).*t.^0.5;
     a = 1 + 2.2*(x-1.5).^2; % Area, a
% Time steps
     nt = 1600
% calculating the value of time step using courant criteria
    del t(i) = c*(dx/(t(i)^0.5+v(i)));
```


