ROLES AND RESPONSIBILITIES

• Developed 4th order approximations of second order derivative of exp(x)*cos(x) using taylor table method.

 Developed matlab code to solve 1D convection equations using central difference, right hand skewed difference and left hand skewed difference methods.

• Plotted error between these approximations to identify most accurate finite difference method.

CODE AND RESULTS SNIPPET

subplot(2,2,3)

b)Skewed Right Side scheme

$$\frac{\partial^2 f}{\partial^2 x} = \frac{\alpha \cdot f(x) + b \cdot f(x + \triangle \cdot x) + c \cdot f(x + 2\triangle x) + d \cdot f(x + 3\triangle x) + e \cdot f(x + 4\triangle x)}{(\triangle x)^2}$$

equation (i)

To obtain the values of a,b,c,d,e we can use taylor's table

	f(i)	f"(i)∆x	$f^{\prime\prime\prime}(i)(\Delta\varkappa)^2$	$f^{***}(i)(\Delta x)^2$	f""(i)(∆x)²	$f^{*****}(i)(\Delta x)^2$	$f^{******}(i)(\Delta x)^2$
a*f(i)	a	D	0	0	0	0	0
b*f(i+1)	ь	b	b/2	b/6	b/24	b/120	b/720
c*f(i+2)	c	2c	2c	4/3c	2/3*c	4/15*c	4/45*c
d*f(i+3)	d	3d	4.5d	4.5d	27/8*d	81/40*d	81/80*d
e*f(i+4) SUM	e 0	4e 0	8e 1	32/3 ^x e 0	32/3*e 0	128/15*e ?	5.6889e ?

```
clear all
 close all
 dx=linspace(1/40,1/20,25);
 x = (pi/40);
 analytical function=exp(x) *cos(x);
 for i=1:length(dx)
 \texttt{CDS approx(i) = (-0.0834*(-2*exp(x-2*dx(i))*sin(x-2*dx(i)))+1.3337*(-2*exp(x-dx(i)))*sin(x-dx(i)))-2.5005*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i)))+1.3337*(-2*exp(x-dx(i))+1.3337*(-2*exp(x-dx
second order derivative(i)=-2*exp(x)*sin(x);
error CDS(i)=abs(second_order_derivative(i)-CDS_approx(i));
FDS approx(i) = (2.9280*(-2*exp(x)*sin(x))-8.7103*(-2*exp(x+dx(i))*sin(x+dx(i)))+9.5624*((-2*exp(x+2*dx(i))*sin(x+dx(i))))
error FDS(i)=abs(second order derivative(i)-FDS approx(i));
BDS approx(i) = (2.9336*(-2*exp(x)*sin(x))-8.7327*(-2*exp(x-dx(i))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i)))*sin(x-dx(i)))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i))))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.5961*((-2*exp(x-2*dx(i)))+9.
error BDS(i)=abs(second order derivative(i)-BDS approx(i));
 end
 subplot(2,2,1)
 plot(dx,error CDS,'k')
                                                                                                                                                                                                                                                                                                   CDS Error values Vs dx
xlabel('dx values')
                                                                                                                                                                                                                                                             4.175
                                                                                                                                                                                                                                                                                                                                                                                                                       4.11
ylabel('Error values CDS')
                                                                                                                                                                                                                                                                                                                                                                                                                          4.1
 title('CDS Error values Vs dx')
                                                                                                                                                                                                                                                                                                                                                                                                             £ 4.09
 subplot(2,2,2)
                                                                                                                                                                                                                                                     4.165
4.16
                                                                                                                                                                                                                                                                                                                                                                                                              4.08
 plot(dx,error FDS,'r')
                                                                                                                                                                                                                                                                                                                                                                                                              9 4.07
xlabel('dx values')
                                                                                                                                                                                                                                                                                                                                                                                                               ē 4.06
ylabel('Error values FDS')
 title('FDS Error values Vs dx')
```


